永久免费看电视网站-永久免费黄色软件-永久免费观看的毛片的网站-永久毛片-久久久久99-久久久久18

有限元方法與有限差分到底有什么區別(有限元四節點單元)

鋼結構設計12-105.95 K閱讀0評論
該方法將求解域劃分為差分網格,用有限個網格節點代替連續的求解域。有限差分法以Taylor級數展開等方法,把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而建立以網格節點上的值為未知數的代數方程組。這是有限體積法吸引人的優點。有一些離散方法,例如有限差分法,僅當網格極其細密時,離散方程才滿足積分守恒;而有限體積法即使在粗網格情況下,也顯示出準確的積分守恒。
本文目錄

有限元方法與有限差分到底有什么區別

1.1 概念
有限差分方法(FDM)是計算機數值模擬最早采用的方法,至今仍被廣泛運用。該方法將求解域劃分為差分網格,用有限個網格節點代替連續的求解域。有限差分法以Taylor級數展開等方法,把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而建立以網格節點上的值為未知數的代數方程組。該方法是一種直接將微分問題變為代數問題的近似數值解法,數學概念直觀,表達簡單,是發展較早且比較成熟的數值方法。
1.2 差分格式
(1)從格式的精度來劃分,有一階格式、二階格式和高階格式。
(2)從差分的空間形式來考慮,可分為中心格式和逆風格式。
(3)考慮時間因子的影響,差分格式還可以分為顯格式、隱格式、顯隱交替格式等。
目前常見的差分格式,主要是上述幾種形式的組合,不同的組合構成不同的差分格式。差分方法主要適用于有結構網格,網格的步長一般根據實際地形的情況和柯朗穩定條件來決定。
1.3 構造差分的方法
構造差分的方法有多種形式,目前主要采用的是泰勒級數展開方法。其基本的差分表達式主要有三種形式:一階向前差分、一階向后差分、一階中心差分和二階中心差分等,其中前兩種格式為一階計算精度,后兩種格式為二階計算精度。通過對時間和空間這幾種不同差分格式的組合,可以組合成不同的差分計算格式。
2. FEM
2.1 概述
有限元方法的基礎是變分原理和加權余量法,其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函數的插值點,將微分方程中的變量改寫成由各變量或其導數的節點值與所選用的插值函數組成的線性表達式,借助于變分原理或加權余量法,將微分方程離散求解。采用不同的權函數和插值函數形式,便構成不同的有限元方法。
2.2 原理
有限元方法最早應用于結構力學,后來隨著計算機的發展慢慢用于流體力學、土力學的數值模擬。在有限元方法中,把計算域離散剖分為有限個互不重疊且相互連接的單元,在每個單元內選擇基函數,用單元基函數的線形組合來逼近單元中的真解,整個計算域上總體的基函數可以看為由每個單元基函數組成的,則整個計算域內的解可以看作是由所有單元上的近似解構成。在河道數值模擬中,常見的有限元計算方法是由變分法和加權余量法發展而來的里茲法和伽遼金法、最小二乘法等。
根據所采用的權函數和插值函數的不同,有限元方法也分為多種計算格式。
(1)從權函數的選擇來說,有配置法、矩量法、最小二乘法和伽遼金法;
(2)從計算單元網格的形狀來劃分,有三角形網格、四邊形網格和多邊形網格;
(3)從插值函數的精度來劃分,又分為線性插值函數和高次插值函數等。
不同的組合同樣構成不同的有限元計算格式。
對于權函數,伽遼金(Galerkin)法是將權函數取為逼近函數中的基函數;最小二乘法是令權函數等于余量本身,而內積的極小值則為對代求系數的平方誤差最小;在配置法中,先在計算域內選取N個配置點。令近似解在選定的N個配置點上嚴格滿足微分方程,即在配置點上令方程余量為0。插值函數一般由不同次冪的多項式組成,但也有采用三角函數或指數函數組成的乘積表示,但最常用的多項式插值函數。
有限元插值函數分為兩大類,一類只要求插值多項式本身在插值點取已知值,稱為拉格朗日(Lagrange)多項式插值;另一種不僅要求插值多項式本身,還要求它的導數值在插值點取已知值,稱為哈密特(Hermite)多項式插值。單元坐標有笛卡爾直角坐標系和無因次自然坐標,有對稱和不對稱等。常采用的無因次坐標是一種局部坐標系,它的定義取決于單元的幾何形狀,一維看作長度比,二維看作面積比,三維看作體積比。在二維有限元中,三角形單元應用的最早,近來四邊形等參元的應用也越來越廣。對于二維三角形和四邊形電源單元,常采用的插值函數為有Lagrange插值直角坐標系中的線性插值函數及二階或更高階插值函數、面積坐標系中的線性插值函數、二階或更高階插值函數等。
2.3 基本原理與解題步驟
對于有限元方法,其基本思路和解題步驟可歸納為:
(1)建立積分方程,根據變分原理或方程余量與權函數正交化原理,建立與微分方程初邊值問題等價的積分表達式,這是有限元法的出發點。
(2)區域單元剖分,根據求解區域的形狀及實際問題的物理特點,將區域剖分為若干相互連接、不重疊的單元。區域單元劃分是采用有限元方法的前期準備工作,這部分工作量比較大,除了給計算單元和節點進行編號和確定相互之間的關系之外,還要表示節點的位置坐標,同時還需要列出自然邊界和本質邊界的節點序號和相應的邊界值。
(3)確定單元基函數,根據單元中節點數目及對近似解精度的要求,選擇滿足一定插值條件的插值函數作為單元基函數。有限元方法中的基函數是在單元中選取的,由于各單元具有規則的幾何形狀,在選取基函數時可遵循一定的法則。
(4)單元分析:將各個單元中的求解函數用單元基函數的線性組合表達式進行逼近;再將近似函數代入積分方程,并對單元區域進行積分,可獲得含有待定系數(即單元中各節點的參數值)的代數方程組,稱為單元有限元方程。
(5)總體合成:在得出單元有限元方程之后,將區域中所有單元有限元方程按一定法則進行累加,形成總體有限元方程。
(6)邊界條件的處理:一般邊界條件有三種形式,分為本質邊界條件(狄里克雷邊界條件)、自然邊界條件(黎曼邊界條件)、混合邊界條件(柯西邊界條件)。對于自然邊界條件,一般在積分表達式中可自動得到滿足。對于本質邊界條件和混合邊界條件,需按一定法則對總體有限元方程進行修正滿足。
(7)解有限元方程:根據邊界條件修正的總體有限元方程組,是含所有待定未知量的封閉方程組,采用適當的數值計算方法求解,可求得各節點的函數值。
3. 有限體積法
有限體積法(FiniteVolumeMethod)又稱為控制體積法。其基本思路是:將計算區域劃分為一系列不重復的控制體積,并使每個網格點周圍有一個控制體積;將待解的微分方程對每一個控制體積積分,便得出一組離散方程。其中的未知數是網格點上的因變量的數值。為了求出控制體積的積分,必須假定值在網格點之間的變化規律,即假設值的分段的分布的分布剖面。從積分區域的選取方法看來,有限體積法屬于加權剩余法中的子區域法;從未知解的近似方法看來,有限體積法屬于采用局部近似的離散方法。簡言之,子區域法屬于有限體積發的基本方法。有限體積法的基本思路易于理解,并能得出直接的物理解釋。離散方程的物理意義,就是因變量在有限大小的控制體積中的守恒原理,如同微分方程表示因變量在無限小的控制體積中的守恒原理一樣。限體積法得出的離散方程,要求因變量的積分守恒對任意一組控制體積都得到滿足,對整個計算區域,自然也得到滿足。這是有限體積法吸引人的優點。有一些離散方法,例如有限差分法,僅當網格極其細密時,離散方程才滿足積分守恒;而有限體積法即使在粗網格情況下,也顯示出準確的積分守恒。就離散方法而言,有限體積法可視作有限單元法和有限差分法的中間物。有限單元法必須假定值在網格點之間的變化規律(既插值函數),并將其作為近似解。有限差分法只考慮網格點上的數值而不考慮值在網格點之間如何變化。有限體積法只尋求的結點值,這與有限差分法相類似;但有限體積法在尋求控制體積的積分時,必須假定值在網格點之間的分布,這又與有限單元法相類似。在有限體積法中,插值函數只用于計算控制體積的積分,得出離散方程之后,便可忘掉插值函數;如果需要的話,可以對微分方程中不同的項采取不同的插值函數。
4. 比較分析
有限差分法(FDM):直觀,理論成熟,精度可眩但是不規則區域處理繁瑣,雖然網格生成可以使FDM應用于不規則區域,但是對區域的連續性等要求較嚴。使用FDM的好處在于易于編程,易于并行。
有限元方法(FEM):適合處理復雜區域,精度可眩缺憾在于內存和計算量巨大。并行不如FDM和FVM直觀。不過FEM的并行是當前和將來應用的一個不錯的方向。
有限容積法:適于流體計算,可以應用于不規則網格,適于并行。但是精度基本上只能是二階了。FVM的優勢正逐漸顯現出來,FVM在應力應變,高頻電磁場方面的特殊的優點正在被人重視。
比較一下:
有限容積法和有限差分法:一個區別就是有限容積法的截差是不定的(跟取的相鄰點有關,積分方法離散方程),而有限差分就可以直接知道截差(微分方法離散方程)。有限容積法和有限差分法最本質的區別是,前者是根據積分方程推導出來的(即對每個控制體積分),后者直接根據微分方程推導出來,所以前者的精度不但取決于積分時的精度,還取決與對導數處理的精度,一般有限容積法總體的精度為二階,因為積分的精度限制,當然有限容積法對于守恒型方程導出的離散方程可以保持守恒型;而后者直接由微分方程導出,不涉及積分過程,各種導數的微分借助Taylor展開,直接寫出離散方程,當然不一定有守恒性,精度也和有限容積法不一樣,一般有限差分法可以使精度更高一些。
當然二者有聯系,有時導出的形式一樣,但是概念上是不一樣的。
至于有限容積法和有限元相比,有限元在復雜區域的適應性對有限容積是毫無優勢可言的,至于有限容積的守恒性,物理概念明顯的這些特點,有限元是沒有的。目前有限容積在精度方面與有限元法有些差距。
有限元方法比有限差分優越的方面主要在能適應不規則區域,但是這只是指的是傳統意義上的有限差分,現在發展的一些有限差分已經能適應不規則區域。對于橢圓型方程,如果區域規則,傳統有限差分和有限元都能解,在求解效率,這里主要指編程負責度和收斂快慢、內存需要,肯定有限差分有優勢。

有限差分法(Finite Difference)、有限體積法(Finite Volume)、有限元法(Finite element)怎樣辨析

有限差分方法(FDM)是計算機數值模擬最早采用的方法,至今仍被廣泛運用.該方法將 求解域劃分為差分網格,用有限個網格節點代替連續的求解域.有限差分法以Taylor級 數展開等方法,把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而 建立以網格節點上的值為未知數的代數方程組.該方法是一種直接將微分問題變為代數 問題的近似數值解法,數學概念直觀,表達簡單,是發展較早且比較成熟的數值方法.   對于有限差分格式,從格式的精度來劃分,有一階格式、二階格式和高階格式.從差分 的空間形式來考慮,可分為中心格式和逆風格式.考慮時間因子的影響,差分格式還可 以分為顯格式、隱格式、顯隱交替格式等.目前常見的差分格式,主要是上述幾種形式 的組合,不同的組合構成不同的差分格式.差分方法主要適用于有結構網格,網格的步 長一般根據實際地形的情況和柯朗穩定條件來決定.\x0d  構造差分的方法有多種形式,目前主要采用的是泰勒級數展開方法.其基本的差分表達 式主要有三種形式:一階向前差分、一階向后差分、一階中心差分和二階中心差分等, 其中前兩種格式為一階計算精度,后兩種格式為二階計算精度.通過對時間和空間這幾 種不同差分格式的組合,可以組合成不同的差分計算格式.\x0d  有限元方法的基礎是變分原理和加權余量法,其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函數的插值點,將微分 方程中的變量改寫成由各變量或其導數的節點值與所選用的插值函數組成的線性表達式 ,借助于變分原理或加權余量法,將微分方程離散求解.采用不同的權函數和插值函數形式,便構成不同的有限元方法.有限元方法最早應用于結構力學,后來隨著計算機的發展慢慢用于流體力學的數值模擬.在有限元方法中,把計算域離散剖分為有限個互不重疊且相互連接的單元,在每個單元內選擇基函數,用單元基函數的線形組合來逼近單元中的真解,整個計算域上總體的基函數可以看為由每個單元基函數組成的,則整個計算域內的解可以看作是由所有單元上的近似解構成.在河道數值模擬中,常見的有限元計算方法是由變分法和加權余量法發展而來的里茲法和伽遼金法、最小二乘法等.根據所采用的權函數和插值函數的不同,有限元方法也分為多種計算格式.從權函數的選擇來說,有配置法、矩量法、最小二乘法和伽遼金法,從計算單元網格的形狀來劃分,有三角形網格、四邊形網格和多邊形 網格,從插值函數的精度來劃分,又分為線性插值函數和高次插值函數等.不同的組合 同樣構成不同的有限元計算格式.對于權函數,伽遼金(Galerkin)法是將權函數取為逼近函數中的基函數 ;最小二乘法是令權函數等于余量本身,而內積的極小值則為對代求系數的平方誤差最小;在配置法中,先在計算域 內選取N個配置點 .令近似解在選定的N個配置點上嚴格滿足微分方程,即在配置點上令方程余量為0.插值函數一般由不同次冪的多項式組成,但也有采用三角函數或指數函數組成的乘積表示,但最常用的多項式插值函數.有限元插值函數分為兩大類,一類只要求插值多項式本身在插值點取已知值,稱為拉格朗日(Lagrange)多項式插值;另一種不僅要求插值多項式本身,還要求它的導數值在插值點取已知值,稱為哈密特(Hermite)多項式插值.單元坐標有笛卡爾直角坐標系和無因次自然坐標,有對稱和不對稱等.常采用的無因次坐標是一種局部坐標系,它的定義取決于單元的幾何形狀,一維看作長度比,二維看作面積比,三維看作體積比.在二維有限元中,三角形單元應用的最早,近來四邊形等參元的應用也越來越廣.對于二維三角形和四邊形電源單元,常采用的插值函數為有Lagrange插值直角坐標系中的線性插值函數及二階或更高階插值函數、面積坐標系中的線性插值函數、二階或更高階插值函數等.\x0d對于有限元方法,其基本思路和解題步驟可歸納為\x0d(1)建立積分方程,根據變分原理或方程余量與權函數正交化原理,建立與微分方程初邊值問題等價的積分表達式,這是有限元法的出發點.\x0d(2)區域單元剖分,根據求解區域的形狀及實際問題的物理特點,將區域剖分為若干相互連接、不重疊的單元.區域單元劃分是采用有限元方法的前期準備工作,這部分工作量比較大,除了給計算單元和節點進行編號和確定相互之間的關系之外,還要表示節點的位置坐標,同時還需要列出自然邊界和本質邊界的節點序號和相應的邊界值.\x0d(3)確定單元基函數,根據單元中節點數目及對近似解精度的要求,選擇滿足一定插值條 件的插值函數作為單元基函數.有限元方法中的基函數是在單元中選取的,由于各單元 具有規則的幾何形狀,在選取基函數時可遵循一定的法則.\x0d(4)單元分析:將各個單元中的求解函數用單元基函數的線性組合表達式進行逼近;再將 近似函數代入積分方程,并對單元區域進行積分,可獲得含有待定系數(即單元中各節點 的參數值)的代數方程組,稱為單元有限元方程.\x0d(5)總體合成:在得出單元有限元方程之后,將區域中所有單元有限元方程按一定法則進 行累加,形成總體有限元方程.\x0d(6)邊界條件的處理:一般邊界條件有三種形式,分為本質邊界條件(狄里克雷邊界條件 )、自然邊界條件(黎曼邊界條件)、混合邊界條件(柯西邊界條件).對于自然邊界條件, 一般在積分表達式中可自動得到滿足.對于本質邊界條件和混合邊界條件,需按一定法 則對總體有限元方程進行修正滿足.\x0d(7)解有限元方程:根據邊界條件修正的總體有限元方程組,是含所有待定未知量的封閉 方程組,采用適當的數值計算方法求解,可求得各節點的函數值.\x0d有限體積法(Finite Volume Method)又稱為控制體積法.其基本思路是:將計算區域劃分為一系列不重復的控制體積,并使每個網格點周圍有一個控制體積;將待解的微分方程對每一個控制體積積分,便得出一組離散方程.其中的未知數是網格點上的因變量的數值.為了求出控制體積的積分,必須假定值在網格點之間的變化規律,即假設值的分段的分布的分布剖面.從積分區域的選取方法看來,有限體積法屬于加權剩余法中的子區域法;從未知解的近似方法看來,有限體積法屬于采用局部近似的離散方法.簡言之,子區域法屬于有限體積發的基本方法.\x0d有限體積法的基本思路易于理解,并能得出直接的物理解釋.離散方程的物理意義,就 是因變量在有限大小的控制體積中的守恒原理,如同微分方程表示因變量在無限小的控 制體積中的守恒原理一樣. 限體積法得出的離散方程,要求因變量的積分守恒對任意一組控制體積都得到滿足,對整個計算區域,自然也得到滿足.這是有限體積法吸引人的優點.有一些離散方法,例如有限差分法,僅當網格極其細密時,離散方程才滿足積分守恒;而有限體積法即使在粗網格情況下,也顯示出準確的積分守恒.就離散方法而言,有限體積法可視作有限單元法和有限差分法的中間物.有限單元法必須假定值在網格點之間的變化規律(既插值函數),并將其作為近似解.有限差分法只考慮網格點上的數值而不考慮值在網格點之間如何變化.有限體積法只尋求的結點值,這與有限差分法相類似;但有限體積法在尋求控制體積的積分時,必須假定值在網格點之間的分布,這又與有限單元法相類似.

UG有限元分析結果中的應力

應力-基本指的是應力云圖,而應力-單元節點指的是某一節點的應變圖。希望能幫助你,但ug有限元分析有些局限,建議學習ansys。

有限元的特性是

1.有限元簡介有限單元法 — 起源于數學學科,最早是用于求解復雜微分和偏微分方程的數值計算方法。后來,有限單元法隨著電子計算機的發展而迅速發展起來的一種彈性力學問題的數值求解方法。經過辛科維奇等力學大師的推廣,有限元法是目前工程領域應用最為廣泛的數值模擬方法之一。五十年代初,有限元法首先應用于連續體力學領域-飛機結構靜、動態特性分析中,用以求得結構的變形、應力、固有頻率以及振型。由于這種方法的有效性,有限單元法的應用已從線性問題擴展到非線性問題,分析的對象從彈性材料擴展到塑性、粘彈性、粘塑性和復合材料,從連續體擴展到非連續體。有限元法本質上是一種(偏)微分方程的數值求解方法,認識到這一點以后,從70年代開始,有限元法的應用領域逐漸從固體力學領域擴展到其它需要求解微分方程的領域,如流體力學、傳熱學、電磁學、聲學等。有限元法把一個原來連續的物體劃分為有限個單元,這些單元通過有限個節點相互連接,承受與實際載荷等效的節點載荷,并根據力的平衡條件進行單元分析,然后根據變形協調條件把這些單元重新組合成能夠進行綜合求解的整體。有限元法的基本思想—離散化

有限元法中,3節點三角形和8節點四邊形單元的特點

三節點單元是一次線性的而四邊8節點是二次分線性的,準確啊

有限元分析時劃分網格的標準是什么

有限元分析時劃分網格的標準是單元屬性(包括實常數)、幾何模型的定義網格屬性。定義網格的屬性主要是定義單元的形狀、大小。單元大小基本上在線段上定義,可以用線段數目或長度大小來劃分,可以在線段建立后立刻聲明,或整個實體模型完成后逐一聲明。采用Bottom-Up建立模型時,采用線段建立后立刻聲明比較方便且不易出錯。例如聲明線段數目和大小后,復制對象時其屬性將會一起復制,完成上述操作后便可進行網格化命令。網格化過程也可以逐步進行,即實體模型對象完成到某個階段就進行網格話,如所得結果滿意,則繼續建立其他對象并網格化。網格的劃分可以分為自由網格(free meshing)、映射網格(mapped meshing)和掃略網格(sweep meshing)等。

四節點有限元分析有限元方法與有限差分到底有什么區別(有限元四節點單元)

發表評論

快捷回復:表情:
AddoilApplauseBadlaughBombCoffeeFabulousFacepalmFecesFrownHeyhaInsidiousKeepFightingNoProbPigHeadShockedSinistersmileSlapSocialSweatTolaughWatermelonWittyWowYeahYellowdog
評論列表 (暫無評論,5952人圍觀)

還沒有評論,來說兩句吧...

目錄[+]

主站蜘蛛池模板: 无码天堂亚洲国产AV久久| Chinesetube国产中文| 妞干网手机免费视频| 九九免费的视频| 精品手机在线视频| 久久a级片| 兰桂坊人成社区亚洲精品| 久久9精品区-无套内射无码| 精品国产自在天天线2019| 精品高清国产a毛片| 久久99精品AV99果冻| 精品九九视频| 久久水蜜桃亚洲AV无码精品偷窥| 久久毛片网站| 暖暖视频免费高清在线观看 视频| 免费在线观看一区| 三级在线网址| 亚洲国产成人在线| 一品道门在线观看免费视频| 在线精品视频免费观看| 99精品AV无码一区二区| qq快播电影网| 国产精品久久久久久久久免费下载 | 伊人久久国产| 67194con免费福和视频| 99久热这里精品免费| 动漫美女的禁| 国产一区二区在线免费观看| 久久www免费人成_看片高清| 男男肉肉互插腐文| 日韩一本道无码v| 亚洲欧洲日本无在线码播放| 777米奇影院第七色色| 成人免费网址在线| 国语自产一区第二页| 男男h开荤粗肉h文1v1| 十分钟免费视频大全在线| 亚洲中文字幕一二三四区苍井空| 99re 这里只有精品| 国产高清视频免费最新在线| 国家产午夜精品无人区|